1	(a	(i)	$6Li + N_2 = 2Li_3N$
			species (1) balancing (1)

(ii)	N ³ ion drawn correctly	[1]
	Charges correct (minimum $1 \times Li$ ion and 1 nitride ion)	[1]
(b)	$3\times$ shared pairs between N and $3\times F$	[1]
	only 2 non-bonding electrons on N, 6 non-bonding electrons on each F (COND on first point)	[1]
(ii)	Strong attractive forces/strong ionic bonds in lithium nitride	[1]
	weak (attractive) forces between molecules in NF_3	[1]
		[Total: 8]

2 (a (i)

Group number	I	II	111	IV	VI	V
symbol		Mg	Al	Si	S	Cl
number of valency electrons	1		3	4	6	
valency	1		3	4	2	

(1) for each I [2]

[1]

- (ii) number of valency electrons = the group number (1)
- (iii) for Na to Al

the valency is the same as the number of valency (outer) electrons (1)

(because) this is the number of electrons **lost** (for full energy level) (1)

for P to C*l* the valency is 8 - [number of valency (outer) electrons]**or** valency + valency electrons = 8 (1)

(because) this is number of electrons **needed** (or to be **gained**) (for full energy level) (1)

- (b) (i) Assume change is from L to R unless clearly stated: basic to amphoteric to acidic (2) [2]
 (ii) ionic (metal) chlorides on the left (1)
 - covalent (non-metal) chlorides on the right (1) [2]

[Total: 11]

3	(a	any three from: (it would have) more than one or variable valency/oxidation state/oxidation number (1)	
		(metal/element/titanium/it has a) high density (1)	
		coloured compounds/ions/solutions (1)	
		form complex (ions) (1)	
		(element/compound act as) catalyst (1)	[3]
	(b)	ScF ₃ (1)	
		correct charges on <u>both</u> ions (1)	
		8 electrons around (each) fluoride (1)	[3]
	(c)	name or formula of strong acid and alkali (1)	
		reacts with or neutralises both acid and base or alkali (then amphoteric) (1)	
		it dissolves/soluble in both(acid and alkali) or form solutions in both (1)	[3]
			[Total: 9]
4	(a	repeat without indicator/repeat using same volumes of acid and alkali or use carbon/charcoal to remove indicator (1)	
		evaporate/heat/warm/boil/leave in sun (1)	
		until most of the water has gone/some water is left/saturation (point)/ crystallisation point (1)	
		leave/allow to cool/allow to crystallise (1)	
		filter (off crystals)/wash(with distilled water)/dry crystals with filter paper/dry crystals in warm place/oven/windowsill (1)	[5]
	(b)	<u>0.062</u> (1)	

- 0.031 (1)
- 3.97g (1)
- 55.4% (1)

[4]

5	(a	(i)	proton or H ⁺ acceptor	[1]
	1-	()		
		(ii)	(measure) pH or (use) UI indicator note : can be implied need not be explicit	[1]
			sodium hydroxide has high <u>er</u> pH / ammonia(aq) has low <u>er</u> pH (this sentence would score 2 marks)	[1]
			or	
			appropriate colours with UI / appropriate numerical values	[1]
			ammonia is closer to green, blue-green, turquoise or lighter blue sodium hydroxide is darker blue / purple / violet	[1]
			or	
			measure electrical conductivity	[1]
			can be implied need not be explicit	
			ammonia (aq) is the poor <u>er</u> conductor/ sodium hydroxide is the better conductor	[1]
(b) aı	ny fiv	e from:	

- high pressure favours lower volume side / movement to right / ammonia side, or high pressure increases the yield
- high pressure increases rate
- low temperature favours exothermic reaction / increases yield / favours the forward reaction
- low temperature gives low rate or vice versa
- catalyst increases rate or lowers activation energy
- 450 °C low enough to give an economic yield but with catalyst gives a fast enough rate note need whole concept to get this compromise temperature point [5]

(c) $2NH_3 + NaClO \rightarrow N_2H_4 + NaCl + H_2O$ [2 not balanced only 1

(d)	4 hydrogen atoms 1 bonding pair each	[1]
	2 nitrogen atoms with 1 bonding pair between them	[1]
	one non-bonding pair on each N (need not be seen as a pair)	[1]

(e) pH increases [1]

(ii) oxygen needed for rusting / removes oxygen / reacts with oxygen [1]

[Total: 15]

6	(a	(i)	any ambiguous formula, e.g. GeH ₃ -GeH ₂ -GeH ₃	[1]
		(ii)	Ge _n H _{2n+2} NOT C instead of Ge	[1]
	(b)	cori CO CO	rect formula ND 4bps around germanium atom ND 3nbps and 1bp around each chlorine atom	[1] [1]
	(c)	four two tetra	r oxygen atoms around each germanium atom germanium atoms around each oxygen atom ahedral	[1] [1] [1]
	(d)	oxic CO AC	dation ND increase in oxidation number CEPT: electron loss	[1] [1]
7	(a	Ai irc irc irc irc N N N N	ny three of: on is harder on has higher density CCEPT: heavier or potassium lighter on has higher mp or bp on has higher tensile strength or stronger on has magnetic properties OTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1) OT: appearance e.g. shiny CCEPT: comparative statements relating to potassium	[3]
	(b) po zi co	otassium hydrogen (1) and potassium hydroxide (1) nc hydrogen (1) and zinc oxide (1) opper no reaction (1)	[5]
				[Total: 8]